
1

SE3: Sequential Equivalence Checking
for Non-Cycle-Accurate Design Transformations†

You Li∗, Guannan Zhao∗, Yunqi He, and Hai Zhou
Northwestern University, Evanston, USA

{you.li, gnzhao, yunqi.he}@u.northwestern.edu, haizhou@northwestern.edu

Abstract—In high-level design explorations, many useful optimizations
transform a circuit into another with different operating cycles for
a better trade-off between performance and resource usage. How to
efficiently check their equivalence is critical and challenging since most
existing equivalence checkers are designed for cycle-accurate circuits.
This paper presents SE3, an efficient sequential equivalence checker
without assumption on cycle-accuracy, latch mapping, or I/O interface
of the checked circuits. It proves the equivalence of two circuits by
computing an equivalence relation between the states of the two circuits
and utilizes syntax abstraction to accelerate this process. Experimental
results show that SE3 is significantly faster than state-of-the-art sequential
equivalence checking algorithms.

Index Terms—equivalence checking, model checking, sequential circuit,
quantifier elimination

I. INTRODUCTION

With the growing demand for high-performance integrated circuits,
design engineers and optimization tools tend to perform more aggres-
sive sequential transformations to meet the timing and throughput
goals. For instance, retiming techniques move logic across flip-flops
to meet timing constraints; pipelining techniques introduce additional
pipeline stages, trading off latency for throughput; pre-computation
techniques prepare the results earlier to remove their computations
from the critical path. Other examples of sequential transformations
include unrolling, resource reallocation, clock gating, and memory
partitioning. A design after such transformations may no longer be
cycle-accurate with the original one. Additionally, there may not exist
a one-to-one latch mapping between the two circuits because these
transformations can change the functionalities of the flip-flops.

Recently, adaptive pipelining [1], [2] is proposed to enable dy-
namic scheduling, i.e., the period of each iteration is a variable
depending on the inputs and the previous executions. Moreover, the
latency-intensive (LI) design methodology has emerged to tolerate
the arbitrary timing of individual hardware modules. Under the
relaxed timing requirements, engineers can design highly customized
hardware modules with variable latencies. Sequential equivalence
checking is the key enabler of sequential design transformations. It
finds application in various stages of the IC design flow [3], for
example, in checking if an RTL model conforms to the functional
specification it seeks to implement or determining if a derivative
RTL or gate-level model is functionally equivalent to a validated
model. Co-simulation is also widely used in such scenarios but
has limited functional coverage. In comparison, formal sequential
equivalence checking is a comprehensive and rigorous approach that
allows verification engineers to prove the consistency of two designs
over any number of cycles.

Several formal sequential equivalence checking algorithms have
been proposed [4]–[8], yet nearly all of them have restricted use
cases. Some algorithms assume that a complete latch mapping is
provided by the user [4]. Others assume that the two designs are

∗
Equal contribution.†
This work is partially supported by the National Science Foundation under

grants 2113704 and 2148177.

structurally similar and that pairs of internal nodes exist that have
identical functionalities [5]–[7]. Kairos [8] can handle almost all types
of transformations, but it requires both designs under verification to
follow a valid-ready interface protocol.

In this paper, we propose SE3 (Syntax-Encoded Stuttering
Equivalence Checking for SEquential Circuits), a general and ef-
ficient algorithm based on symbolic model checking. SE3 formulates
the sequential equivalence checking problem for any transforma-
tions [9] as checking whether the output sequences of the two designs
under verification are alignable given a set of corresponding initial
states and any input sequences. Nevertheless, the consequent formula
involves an alternation of universal and existential quantifiers. Elim-
inating the internal existential quantifier can result in a formula that
is exponential in size.

SE3 tackles this issue by searching for a reversed inductive
invariant on a product machine of two designs, bypassing the need for
quantifier elimination. Additionally, SE3 maintains a frame structure
similar to IC3 [10]. This allows the algorithm to learn new clauses in-
crementally and enables high flexibility in expressing complex equiv-
alence relations. Moreover, SE3 leverages syntax abstraction [11] to
capture the equivalence relations among the internal nodes. Thus, the
algorithm concentrates on high-level, coarse-grained relations at the
beginning of the verification process and gradually shifts to finer-
grained relations through iterative refinement.

We demonstrate the capability and efficiency of SE3 with a
case study and a benchmark suite. SE3 is significantly faster than
Kairos on equivalent test cases and scales well regarding word size.
Besides, SE3 is capable of discovering concise and essential inductive
invariants, which may guide design engineers to understand the nature
of the transformations or locate errors in future transformations.

Our main contributions are:
• We devise a formal property to determine whether two designs are
observational equivalent modulo stuttering;
• We utilize the reversed inductive invariant to bypass the quantifier
alternation issue within the property;
• We adapt the IC3 symbolic model checking framework to achieve
incremental verification;
• We embed syntax abstraction to the stuttering equivalence checking
algorithm, so that SE3 can discover equivalence relations among state
variables and internal nodes at various granularities;
• We evaluate SE3 against state-of-the-art sequential equivalence
checking algorithms.

II. BACKGROUND

A. A Running Example

We use the Euclidean algorithm as the running example throughout
this paper. To compute the greatest common divisor of two integers,
the algorithm iteratively subtracts the smaller integer from the greater
one until they become equal. Listing 1 shows an RTL implementation
of the algorithm. Two subtractors are initiated in parallel, and
only one integer is updated depending on the results. Suppose an

2

Listing 1 Euclidean gcdA(x, y)
while (x− y) ̸= 0 do

x← (x−y) > 0 ? (x−y) : x
y ← (y−x) > 0 ? (y−x) : y

output x

Listing 2 Euclidean gcdB(x, y)
while (x− y) ̸= 0 do

x← (x−y) > 0 ? (x−y) : y
y ← (x− y) > 0 ? y : x

output x

engineer then decides to allocate only one subtractor and adjusts
the implementation accordingly. As shown in Listing 2, only one
subtractor is initiated in a clock cycle.

The two implementations are identical in function but different
in timing. If x equals 6 and y equals 2 initially, both circuits
will take 2 cycles to reach convergence. On the other hand, if
the initial values of x and y are 6 and 10, gcdA will take 3
cycles ⟨(6, 10), (6, 4), (2, 4), (2, 2)⟩, while gcdB will take 6 cycles
⟨(6, 10), (10, 6), (4, 6), (6, 4), (2, 4), (4, 2), (2, 2)⟩. It can be seen
that gcdB has a variable latency relative to gcdA, and there exists no
latch mapping or equivalent internal nodes between the two designs.

B. Preliminaries

We consider standard first-order logic. A term is a variable or a
function symbol. A predicate is an expression applied to a tuple of
terms and evaluates to a Boolean value. An atom is a Boolean variable
or a predicate symbol. The terms with non-Boolean values are also
referred to as words. A formula is built over atoms with propositional
logic. A literal is an atom or its negation. A cube is a conjunction
of literals, while a clause is a disjunction of literals.

A transition system M is defined as a tuple ⟨X, I, T ⟩, where
X is a set of state variables, X ′ is the corresponding set of next-
state variables, I(X) is a formula representing the initial condition,
and T (X,X ′) is a formula representing the transition relation.
It is a common practice to model input variables as additional
state variables [11]–[13] such that X = Xstate ∪ Xin. The next-
state variables X ′

in are unconstrained or controlled by an external
specification. A state s is a full assignment to all state variables.
We write s |= ϕ if s satisfies a formula ϕ modulo the underlying
theory, and s is a ϕ-state. A formula ψ implies another formula ϕ,
ψ ⇒ ϕ, if all state satisfying ψ also satisfies ϕ. A finite or infinite
path is a state sequence such that the first state is an I-state and all
consecutive steps satisfy T (X,X ′). A path is a ϕ-path if all states
along the path are ϕ-states. A reachable lasso-shaped path [14] (a
lasso, in shorthand) is a finite run from an initial state followed by
a loop.

A sequence σ stutters at step k if it keeps the same value for indices
k and k+1. For instance, the sequence ⟨a, b, b, c, · · · ⟩ stutters at step
2. We define ♮σ the stutter-free sequence of σ, which eliminates all
stuttering steps in σ. We let σ ≃ ρ mean ♮σ = ♮ρ [12]. For instance,
♮⟨a, b, b, c⟩ = ⟨a, b, c⟩, and ⟨a, b, b, c⟩ ≃ ⟨a, b, c, c⟩.

C. The IC3 Model Checking Algorithm

IC3 [10] is the state-of-the-art symbolic model checking algorithm
for hardware verification. Given a safety property P (X), IC3 checks
whether M |= P , i.e., all paths of M are P -paths. In this regard, it
tries to find an inductive invariant, Inv, such that

(a) I ⇒ Inv, (b) Inv ∧ T ⇒ Inv′, (c) Inv ⇒ P. (1)

Once an Inv is found, IC3 completes the proof.
During its execution, IC3 maintains a sequence of frames

F0(X), · · · , Fk(X) such that

∀i < k : (a) F0 = I, (b) Fi ∧ T ⇒ F ′
i+1, (c) Fi ⇒ P. (2)

Additionally, the algorithm ensures that each frame is a conjunction
of clauses, and clauses(Fi+1) ⊆ clauses(Fi), where clauses(Fi)
denotes the set of all clauses that constitute Fi. The algorithm
attempts to learn new clauses from the reachability information of
the system and add them to the sequence of frames until one of the
frames is proved to be an inductive invariant.

In the following, we give a high-level description of the algorithm.
At the beginning of every iteration, k is incremented by 1, and a new
frame Fk = P is attached to the sequence. The algorithm queries

SAT?(Fk ∧ T ∧ ¬P ′) (3)

for a new bad state s ∈ Fk. If (3) is satisfiable, a new proof obligation
⟨k, s⟩ is added to a priority queue. Whenever the priority queue is
non-empty, IC3 pops the top element of the queue and queries

SAT?(Fi ∧ T ∧ s′). (4)

If (4) is satisfiable, there must exist another bad state t ∈ Fi, which
is a predecessor of s. A new obligation ⟨k − 1, t⟩ is added to the
queue. If (4) is unsatisfiable, s can be safely excluded from Fi without
affecting the conditions of the frames. Thus, a new clause c = ¬s
is conjoined to Fi+1. The unsatisfiability of (4) guarantees that c is
relatively inductive to Fi, i.e., Fi ∧ c ∧ T ⇒ c′ is a tautology.

If (3) is unsatisfiable, all states in Fk must be more than 1 step
away from bad states. Before IC3 starts a new iteration, it pushes
every c ∈ clauses(Fi) to clauses(Fi+1) if c is relatively inductive
to Fi+1. During this process, if two consecutive frames Fi and Fi+1

become identical, they must satisfy all the conditions of an inductive
invariant, i.e., Inv = Fi, and that finishes the algorithm.

D. Syntax Abstraction

Syntax abstraction [11] creates an abstract space using a subset
of the terms present in the original model. An abstract state is a
partition assignment which captures Boolean values of atoms and
equality relations among the words of each sort. For example, in
Listing 1, the concrete state (6, 3) may correspond to the abstract
state ((x− y) > 0) ∧ ¬((y − x) > 0) ∧ {x | y, x− y | y − x},
where vertical bars divide terms into equivalence classes.

Syntax abstraction removes irrelevant bit-level details, thus fa-
cilitating the reasoning of equivalence relations at a coarse gran-
ularity. An abstract space it creates can be iteratively refined in
a counterexample-guided abstraction refinement (CEGAR) fashion:
once a spurious counterexample is found, new terms are introduced to
eliminate it. Hence, syntax abstraction can be closely integrated with
a model checking algorithm, where the former provides the domain
for reasoning and the latter provides the guidance for refinement.

III. PROBLEM DEFINITION AND ANALYSIS

A. Problem Definition

Our objective is to check the observational equivalence of two
systems, i.e., whether their externally observable behaviors are always
identical. More specifically, we aim to devise an efficient symbolic
model checking algorithm for the following property: starting from
any pair of corresponding initial states, the stutter-free output se-
quences produced by the two systems are identical given the same
input sequence.

B. Product Machine for Stuttering

As the first step to solving the problem, we devise an automated
reasoning mechanism that checks whether two output sequences
are equivalent modulo stuttering. It is based on the observation
that inserting stuttering steps to the faster sequence is the dual of

3

eliminating stuttering steps from the slower sequence. Hence, we
build a product machine for stuttering, M×, to mimic the process of
inserting stuttering steps. The product machine converts the problem
of checking alignability [9] to the problem of finding a feasible
auxiliary input sequence. Denote the two systems under verification
as MA and MB , where MA runs no slower than MB . The state space
S× of M× is a Cartesian product SA × SB , and every state s ∈ S×
is a pair (u, v) where u ∈ SA and v ∈ SB . The transition relation
T× is composed of two branches, Tsyn and Tstu, both of which
are also product machines. Tsyn specifies the behavior that MA and
MB move synchronously: Tsyn(u, v, u

′, v′) ≜ TA(u, u
′)∧TB(v, v

′),
while Tstu specifies the behavior that MA stutters and MB moves
forward: Tstu(u, v, u

′, v′) ≜ (u = u′)∧TB(v, v
′). T× uses a dummy

input, sel, to select its next state from the two branches1:

T×(u, v, sel, u
′, v′) ≜ ∨ ((sel = 0) ∧ Tsyn(u, v, u

′, v′))

∨ ((sel = 1) ∧ Tstu(u, v, u
′, v′)).

(5)

We define the observational equivalence property to be
P×(u, v) ≜ valid ⇒ (uout = vout). The valid signal is only nec-
essary when the output registers can turn into an unstable observable
state. We use (ia, ib) ∈ I× to denote that two initial states from both
systems are related by the initial correspondence I×. By default, I×
contains the pair of reset states. For some applications, it might be
more convenient to directly initialize the corresponding pairs of state
variables with the same input values. In our running example, this
means setting I× to the formula (xA = xB)∧(yA = yB). Advanced
users can also write customized specifications for I× and P×.

From a specific initial state, the state sequence produced by MA

or MB is either a finite or an infinite path. We convert all finite paths
to infinite ones by adding a self-loop to the final states. Notice that
final states can usually be distinguished symbolically with termination
conditions, valid signals, or as the deadlock states in deadlock-free
systems.

Facilitated by M×, we can check if two systems are observational
equivalent modulo stuttering by checking the following condition:

Definition 1. Two systems MA and MB are observational equivalent
modulo stuttering if and only if there exists a P×-lasso on M× from
every pair (u1, v1) ∈ I×.

Definition 1 suggests a naive solution. Given M× and P×, one can
check if they satisfy the correctness property:

∀(u1, v1) ∈ I×, ∀k > 0, ∃sel1, · · · , selk :

T×(ui, vi,seli, ui+1, vi+1) ⇒ (ui+1, vi+1) ∈ P×.
(6)

Intuitively, the property requires that for all pairs within the initial
correspondence, there exists a fair path such that all pairs along
the path satisfy observational equivalence. The existence of a lasso-
shaped fair path can be verified by a fairness checking algorithm [15].
Nevertheless, an exponential number of pairs may exist in I×, and
enumerating all those pairs is computationally intractable even when
the fairness checking algorithm is incremental. Another way to deal
with the quantifier alternation problem is to eliminate all the internal
existential quantifiers. However, an equisatisfiable formula without
existential quantifiers can be exponential in size.

C. Inductive Invariant for Equivalence modulo Stuttering

A conventional inductive invariant proves that a transition system
always satisfies a safety property P by showing ¬P -states are never
reachable from the initial states. We devise a new type of inductive

1By adding a third branch, our method can be generalized to the case that
both systems can be faster than the other.

invariant to prove that two systems are observational equivalent
modulo stuttering:

Definition 2. Inv× is an inductive invariant modulo stuttering for
M× and P× if it satisfies all of the following conditions:
• I× ⇒ Inv×, (7a)
• ∀s ∈ Inv× : (s ∧ Tsyn ⇒ Inv′×) ∨ (s ∧ Tstu ⇒ Inv′×), (7b)
• Inv× ⇒ P×. (7c)

Lemma 1. MA and MB are observational equivalent modulo
stuttering if and only if there exists an Inv× for M× and P×.

Proof. Only-if part: We show the existence constructively. From
Definition 1, if the two systems are equivalent modulo stuttering,
there exists a P×-lasso from every state s1 ∈ I×. Let Inv× be the
formula that contains exactly all pairs along these lassos.
If part: Consider an arbitrary s1 ∈ I×. From (7a), s1 ∈ Inv×;
recursively applying condition (7b) shows that there exists an Inv×-
lasso from s1; all pairs along the lasso are P×-pairs (7c). Because
a P×-lasso exists for every pair in I×, MA and MB are equivalent
modulo stuttering.

Various methods can infer inductive invariants for a transition
system [10], [16]. Nevertheless, due to the disjunction operator in
(7b), these methods cannot be applied directly for the inference of
Inv×. For example, a key procedure in IC3 is to check if a clause c is
relatively inductive to a frame Fi, i.e., Fi∧c∧T ⇒ c′ is a tautology.
It can be verified that if two clauses c1 and c2 are both relatively
inductive to Fi, their conjunction c1∧c2 is also relatively inductive to
Fi. This property allows IC3 to learn new clauses incrementally while
maintaining the structure of the frame sequence. However, if two
clauses both meet condition (7b), their conjunction may not meet the
same condition. This limitation disallows us from adopting existing
inductive invariant inference algorithms to our problem.

D. The Reversed Approach

To address the above issue, we tackle the problem from the
opposite direction. In specific, we switch the roles of I× and ¬P×.
Additionally, we reverse the directions of both Tsyn and Tstu by
switching their current states and next states, yielding T ◦

syn and T ◦
stu.

Thus, the reversed inductive invariant for observational equivalence
modulo stuttering can be defined as follows:

Definition 3. Inv◦× is a reversed inductive invariant modulo
stuttering for M× and P× if it satisfies all of the following
conditions:
• ¬P× ⇒ Inv◦×, (8a)
• ∀sa, sb ∈ Inv◦× :

(sa ∧ T ◦
syn ∧ s′) ∧ (sb ∧ T ◦

stu ∧ s′) ⇒ (s′ ∈ Inv◦×
′), (8b)

• Inv◦× ⇒ ¬I×. (8c)

Notice that there is no longer a disjunction operator in Definition
3. The next lemma states the correlation between Inv× and Inv◦×.

Lemma 2. When Inv◦× = ¬Inv×, Inv× is an inductive invariant
modulo stuttering if and only if Inv◦× is a reversed inductive invariant
modulo stuttering.

Proof. (7a) (resp. (7c)) is the contrapositive statement of (8c) (resp.
(8a)). The negation of (7b) is equisatisfiable to: ∃s ∈ Inv×, s

′
a, s

′
b ∈

¬Inv× : (s ∧ Tsyn ∧ s′a) ∧ (s ∧ Tstu ∧ s′b), which in turn
is equisatisfiable to the negation of (8b). Hence, (7) and (8) are
equisatisfiable when Inv◦× = ¬Inv×.

4

Theorem 3. MA and MB are observational equivalent modulo
stuttering if and only if there exists an Inv◦× for M× and P×.

Proof. Readily follows from Lemma 1 and Lemma 2.

Intuitively, the existence of Inv◦× guarantees that a counterexample
tree, whose leaf nodes are all ¬P×-states and whose root node is an
I×-state, cannot exist.

Based on the above observations, we devise a method to search
for a reversed inductive invariant modulo stuttering. We embed our
method into IC3’s general framework (Section II-C). In the remainder
of this section, we highlight some key procedures we adapt from IC3.
An overall description is left in the next section.
• Similar to (2), our method maintains a sequence of frames, where
F ◦
0 = ¬P× and F ◦

i ⇒ ¬I×. One exception is (2b). If two states
sharing the same parent state are both F ◦

i -states, that parent state
must be an F ◦

i+1-state:

∀sa, sb ∈ F ◦
i :

(sa ∧ T ◦
syn ∧ s′) ∧ (sb ∧ T ◦

stu ∧ s′) ⇒ (s′ ∈ F ◦
i+1

′).
(9)

Hence, F ◦
i is an over-approximation of those states which are at most

i steps away from ¬P×.
• Our method extracts new proof obligations through the query:

SAT? (F ◦
k ∧ T ◦

syn ∧ I ′×) ∧ (F ◦
k
∗ ∧ T ◦

stu ∧ I ′×). (10)

Notice that F ◦
k and F ◦

k
∗ represent two different sets of variables. If

it is satisfiable, two new states s ∈ F ◦
k and s∗ ∈ F ◦

k
∗ are extracted

and added to the queue of proof obligations.
• When the original IC3 discharges a proof obligation, if the query
to (4) is satisfiable, a predecessor t of s is extracted and added to
the priority queue. We mimic that procedure by querying

SAT? (F ◦
i ∧ T ◦

syn ∧ s′) ∧ (F ◦
i
∗ ∧ T ◦

stu ∧ s′). (11)

This procedure allows our method to find candidate bad states that
are more than 1 step away from I×, thus diversifying the clauses in
the sequence of the frames.
• When a query to (11) is unsatisfiable, the newly produced clause
c = ¬s must be relatively inductive modulo stuttering to Fi, i.e., for
any state s̄,

(F ◦
i ∧ T ◦

syn ∧ s̄′) ∧ (F ◦
i
∗ ∧ T ◦

stu ∧ s̄′) ⇒ (s̄′ ∈ c′). (12)

Hence, c can be conjoined to F ◦
i+1 without violating any of the frame

structure conditions including (9).

IV. ALGORITHM

A. The SE3 Algorithm

The core procedures of SE3 are displayed in Algorithm 1. SE3
is designed to retain several desirable features of IC3: a) organizing
clauses in a sequence of relatively inductive frames to enable fully
incremental verification (Line 18; 30); b) generalizing clauses to
accelerate convergence (Line 29); c) propagating clauses to increase
the chance of finding an inductive invariant (Line 16-18); and d)
being compatible with counterexample-guided abstraction refinement
workflows (Line 9, 26, 11-12). From a high-level perspective, SE3
adapts the general framework of IC3 (Section II-C) and combines
it with the reversed invariant finding strategy [17] as well as the
implicit abstraction technique [18]. Due to the similarity, we build
our correctness proof on top of that in the IC3 paper [10]:

Theorem 4. Upon termination, CHECK returns True if and only if
the systems in M× are observational equivalent modulo stuttering.

Algorithm 1 SE3 Algorithm for Stuttering Equivalence Checking

1: procedure CHECK(I×, T ◦
×, P×) → bool:

2: if SAT?(I× ∧ ¬P×) or SAT?(I′× ∧ T ◦
× ∧ ¬P× ∧ ¬P ∗

×) then
3: return False ▷ concrete counterexample found early
4: F ◦

0 ← ¬P×
5: k ← 1, F ◦

k ← ¬I×
6: while True do
7: while SAT?(I′× ∧ T ◦

× ∧ F ◦
k ∧ F ◦∗

k) do
8: ⟨s, s∗⟩ ← the extracted states inside F ◦

k and F ◦∗
k

9: ⟨ŝ, ŝ∗⟩ ← the abstraction of ⟨s, s∗⟩ as partitions of terms
10: if not (BLOCK(k, ŝ) or BLOCK(k, ŝ∗)) then
11: if the abstract counterexample is spurious then
12: refine the abstract space with more terms
13: else return False ▷ concrete counterexample found
14: k ← k + 1, F ◦

k ← ¬I×
15: for i← 1 to k − 1 do
16: for each clause c ∈ F ◦

i do ▷ clause propagation
17: if not SAT?(¬c′ ∧ T ◦

× ∧ F ◦
i ∧ F ◦∗

i) then
18: add c to F ◦

i+1
19: if F ◦

i = F ◦
i+1 then

20: return True ▷ invariant found, equivalence proved

21: ▷ Recursive version for simplicity; actually priority-queue-based. ◁

22: procedure BLOCK(i, ŝ) → bool:
23: if i = 0 or ŝ⇒ ¬P× then return False ▷ bad state reached
24: while SAT?(ŝ′ ∧ T ◦

× ∧ F ◦
i−1 ∧ F ◦∗

i−1) do
25: ⟨t, t∗⟩ ← the extracted states inside F ◦

i−1 and F ◦∗
i−1

26: ⟨t̂, t̂∗⟩ ← the abstraction of ⟨t, t∗⟩ as partitions of terms
27: if not (BLOCK(i− 1, t̂) or BLOCK(i− 1, t̂∗)) then
28: return False ▷ blocking fails for both branches
29: c← the clause generalized from ¬ŝ
30: add c to F ◦

1 , · · · , F ◦
i

31: return True ▷ blocking succeeds with the frames updated

Proof. (Sketch) According to Theorem 3, the decision of observa-
tional equivalence modulo stuttering is reduced to the searching of
an Inv◦×. When both invocations of BLOCK return False at Line
10, there is an abstract counterexample where all paths lead to ¬P×
states. If CHECK returns False at Line 3, a trivial counterexample
is found; if it returns False at Line 13, a concrete counterexample
corresponding to the abstract one is found. In both cases, a valid
Inv◦× cannot exist. On the other hand, if CHECK returns True, Line
20 must have been reached. This implies that two consecutive frames
are identical and a valid Inv◦× is found.

In general, if the word-level models under verification reside in an
infinite space, there are no complexity bounds for a model checking
algorithm. However, if all variables in the models are constant-sized
bit vectors, SE3 will eventually terminate because both the abstraction
refinement process and the frame sequence converging process are
strictly monotonic.

B. Syntax-Guided Abstraction and Refinement

An appropriate abstract space can guide the model checking
algorithm to find a concise and essential inductive invariant. Our
insight is that an equivalence relation can usually be expressed
by terms within either data-intensive or control-intensive models.
Besides, the clause and frame structure of IC3 allows the expression
of not only one-to-one mappings between terms but also the relations
among terms described by logic formulas acrossing time domains.

The SE3 algorithm maintains a set of terms that are currently
used to depict the abstract space. Once a counterexample is found,
it is validated through SMT queries [11]. If it is confirmed to be
spurious, SE3 investigates the unsat core and adds new terms to the

5

set to eliminate the counterexample. SE3 prioritizes state variables
and I/O variables over internal nodes and constants. If none of the
above work, SE3 will also attempt to add primed variables, trying
to capture the correlations between clock cycles. With this strategy,
SE3 iteratively refines the granularity of its reasoning domain until
an inductive invariant or a concrete counterexample is found.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implemented the SE3 algorithm in Python, using Boolec-
tor [19] as the backend SMT solver. Our implementation takes two
RTL-level or gate-level Verilog designs as the inputs. It supports 2-
branch (one design being no slower than the other) and 3-branch (no
timing constraint) modes.

All evaluations are conducted on a Linux machine with a 3.2GHz
CPU. Each instance runs on a single thread. We set a 4GiB memory
limit and a 7,200-second timeout for all experiments.

In the first part of our evaluation, we compare the performance
of SE3 and Kairos [8] and investigate their underlying mechanisms
in a case study. We choose nuXmv [18] and AVR [20] as the
backend model checkers for Kairos, because they won the first and the
third place in the prestigious HWMCC’20 contest [21]. Both nuXmv
and AVR are word-level safety property checkers based on implicit
predicate abstraction and syntax abstraction, respectively.

For the case study, we manually write 4 RTL-level Verilog im-
plementations of our running example. Fig. 1 shows their pseudo-
code. Among those, (a) and (b) correspond to Listing 1 and Listing 2
respectively, while (c) is an alternative implementation of the running
example. We intentionally add a fourth implementation, (d), which is
not equivalent modulo stuttering to any of the rest implementations.

In the second part of our evaluation, we assess the capability and
characteristics of SE3 in a realistic setting. We leverage a high-level
synthesis (HLS) tool, Xilinx Vivado HLS, to generate pairs of non-
cycle-accurate RTL designs. The HLS workflow is a combination of
software compilation and hardware optimization. Because a commer-
cial HLS tool contains almost all kinds of sequential transformations,
it is an excellent source to emulate realistic design transformations
and generate a variety of designs with guaranteed correctness.

We select 7 high-level hardware specifications from the HLSynth
benchmark suite [22] for HLS. Our selection is based on two
rules: i) the benchmark is a standalone module, and ii) at least 6
different RTL-level implementations with different timing can be
generated from the benchmark using Vivado HLS. Table II provides a
summary of those benchmarks. We generate 3 specifications for each
benchmark with the word size set to 8, 16, and 32 bits, respectively.
For each specification, we generate 6 designs with different timing,
thus yielding a total of 15 pairs of designs. We utilize HLS pragmas,
including pipeline, initiation interval, resource allocation, latency,
unroll, flatten, merge, partition, balance, etc., to control a design’s
timing. Eventually, we obtained a total of 315 pairs as our test cases.
Because nuXmv is almost always faster than AVR when paired with
Kairos, we only compare with Kairos/nuXmv in the second part.

B. Case Study

Table I compares the performances of Kairos and SE3 on the test
cases shown in Fig. 1. The first two test cases check designs that are
equivalent modulo stuttering. Even though Kairos uses word-level
model checkers as its backend, its performance deteriorates quickly
as the word size grows. On the contrary, the execution time of SE3
grows more slowly.

We believe that Kairos is over-conservative when aligning two
sequences. As illustrated in Fig. 2(a), Kairos enforces both designs

Test Case Algorithm 3bit 4bit 5bit 6bit 8bit 16bit 32bit

(a) vs. (b) Kairos/nuXmv 0.41 4.13 163.3 − − − −
equiv. Kairos/AVR 18.17 323.4 − − − − −

SE3 0.04 0.05 0.06 0.06 0.07 0.19 0.51

(a) vs. (c) Kairos/nuXmv 0.44 3.25 315.0 − − − −
equiv. Kairos/AVR 10.9 96.06 − − − − −

SE3 0.23 0.29 0.44 0.80 1.34 4.42 13.63

(a) vs. (d) Kairos/nuXmv 0.05 0.07 0.08 0.11 0.13 0.30 0.74

non-equiv. Kairos/AVR 1.02 4.07 17.99 38.96 239.1 294.1 570.2
SE3 1.32 1.77 2.53 3.27 4.77 8.24 36.75

TABLE I: A comparison of execution time (s) under different word sizes.

to execute when none of them or both of them reach a valid state; it
stalls the faster design if exactly one of them reaches a valid state.
Such an alignment pattern hinders the underlying model checker from
finding a concise inductive invariant.

The last test case in Table I checks a pair of non-equivalent
designs. Kairos/nuXmv turns out to be faster than SE3 in finding a
counterexample. It is because Kairos prunes out all alignment patterns
except one. In this regard, Kairos and SE3 are complementary to each
other. A hybrid sequential equivalence checking engine can run the
two algorithms in parallel to achieve optimal performance.

if x > y then x← x− y
else if y > x then y ← y − x

(a) gcdA

if x > y then x← x− y
else swap x and y

(b) gcdB

msb← the highest bit of y

if msb = 0 and x > y ∗ 2 then
x← x− y ∗ 2

else if x > y then x← x− y
else swap x and y

(c) gcdC

▷ Possible overflow in y ∗ 2 ◁

if x > y ∗ 2 then
x← x− y ∗ 2

else if x > y then x← x− y
else swap x and y

(d) gcdD (incorrect)

Fig. 1: Loop bodies of 4 implementations of the gcd running example.

5, 18
5, 13
5, 8
5, 3
2, 3
2, 1
1, 1

5, 18
18, 5
13, 5
8, 5
3, 5
5, 3
2, 3
3, 2
1, 2
1, 1

(a)

5, 18

5, 13
5, 8
5, 3

2, 3

2, 1
1, 1

5, 18
18, 5
13, 5
8, 5
3, 5
5, 3
2, 3
3, 2
1, 2
1, 1

(b)

∨ (P× ∧ {xA, yB} ∧ {yA, xB})
∨ (P× ∧ {xA, xB} ∧ {yA, yB})

(c)
∨ (P× ∧ {xA, yC} ∧ {yA, xC})
∨ (P× ∧ {xA, xC | yA, yC})
∨ (P× ∧ {x′

A, y′C | y
′
A, x′

C})
∨ (P× ∧ {x′

A, x′
C | y

′
A, y′C})

∨ (P× ∧ {x′
A, x′

C , y′A, y′C})
∨ (P× ∧ {xA, y′C | yA, x′

C , yC})
∨ (P× ∧ {xA, y′C | yA, x′

C | yC})
(d)

Fig. 2: Alignments of state sequences starting from (5, 18) for gcdA vs.
gcdB by (a) Kairos and (b) SE3 (bold states are the valid states); the
inductive invariants in partition assignment representation found by SE3
for (c) gcdA vs. gcdB and (d) gcdA vs. gcdC .

Fig. 2(c) and 2(d) showcase the inductive invariants for gcdA vs.
gcdB and gcdA vs. gcdC , respectively. Because gcdA vs. gcdC is
harder to prove, SE3 introduced primed terms during refinements to
capture the relations between the current and the next state variables.

C. Experimental Results

The outcomes of our experiments are shown in Fig. 3. Either in the
3-branch mode or the 2-branch mode, SE3 can solve more equivalent
test cases than Kairos within any period. We also observe that both
the 2-branch and the 3-branch modes can solve some extra test cases
than the other modes within the same period. Specifically, the 2-
branch mode is more efficient when a design is always faster, while
the 3-branch mode can cope with the general situation. Hence, a

6

Name Description # Nodes # Regs
gcd GCD Algorithm 60-115 6-11

euclid Alternative GCD Algorithm 58-109 6-11
counter Bidirectional Counter with Limit 96-164 6-14
diffeq Differential Equation Solver 86-170 6-15

barcode Barcode Reader 93-187 8-18
ellipf Fifth Order Elliptical Wave Filter 135-210 11-21

kalman Kalman Filter 157-229 8-26

TABLE II: A summary of the benchmarks. The number of nodes and
registers are counted by terms.

0 2000 4000 6000
0

10

20

30

40

50

Solved (8-bit)

0 2000 4000 6000
0

10

20

30

40

50

Solved (16-bit)

SE3 (T+D) SE3 (T) SE3 (D) Kairos
0 2000 4000 6000

0

10

20

30

40

50

Solved (32-bit)

Fig. 3: The number of solved instances over time (s) under different word
sizes. T refers to the 3-branch mode and D refers to the 2-branch mode.

combination of the two modes running in parallel can solve the largest
number of test cases.

We notice that Kairos is closer to SE3 in terms of execution time
on two benchmarks: barcode and ellipf. These benchmarks produce
outputs periodically, triggering the valid signal frequently. Kairos can
leverage this additional information to accelerate its computation.

Finally, we analyze the statistics during SE3’s execution. Thanks
to the close integration of the model checking algorithm and syntax
abstraction, the number of total frames and SMT queries are almost
unchanged with respect to the word size. The average time spent per
SMT query moderately increases as the word size grows, and this
accounts for the trend shown in Table I.

T8 T16 T32 D8 D16D32

10

20

Frames

T8 T16 T32 D8 D16D32

101

102

103

SMT Queries

T8 T16 T32 D8 D16D32

101

102

103

Time per Query (ms)

Fig. 4: Statistics of SE3 under different word sizes.

VI. RELATED WORK

Mitering is the standard technique to check if two designs are
combinationally equivalent. A miter composes the designs under veri-
fication by connecting their corresponding inputs. Then an SAT/SMT
solver is queried to check if there exists an input pattern for the
two designs to produce different output patterns. Chauhan et. al.
attempts to reduce sequential equivalence checking problems to
combinational ones [4]. They iteratively unroll both designs until
their periods are both 1. The validity of this approach is based
on two assumptions: both designs have fixed periods, and a latch
mapping is provided by the user. These assumptions may not hold
after significant transformations.

Most algorithms on sequential equivalence checking [5]–[7] utilize
structural similarities between the designs to verify their equivalence.

They either use SAT/BDD sweeping to identify and compress equiv-
alent internal nodes and combine them into equivalent classes, or use
random simulation and counterexample-guided refinement to partition
the classes. The algorithms terminate when all corresponding output
nodes from both designs are proven to be equivalent. Otherwise,
they launch a sequence of rewriting and retiming steps and repeat
the whole process. However, a fixed one-to-one mapping of internal
nodes from both designs may not exist. Moreover, rewriting and
retiming rely heavily on heuristics, which are incomplete methods. In
comparison, our proposed method enables high flexibility to express
the correlations between internal signals. Additionally, it is based on
model checking and guarantees soundness and completeness.

VII. CONCLUSION

In this paper, we propose SE3, an efficient algorithm for non-cycle-
accurate equivalence checking. SE3 first reduces the sequential equiv-
alence checking problem to the problem of checking the alignablity of
observable sequences. It then solves the problem by finding reversed
inductive invariants on a syntax abstracted space. Experimental results
confirm the effectiveness and correctness of SE3.

REFERENCES

[1] S. Dai, G. Liu, R. Zhao, and Z. Zhang, “Enabling adaptive loop
pipelining in high-level synthesis,” in ACSSC’17. IEEE, pp. 131–135.

[2] H. Peng et al., “A length adaptive algorithm-hardware co-design of
transformer on fpga through sparse attention and dynamic pipelining,”
in DAC’22, pp. 1135–1140.

[3] N. Sharma, G. Hasteer, and V. Krishnaswamy, “Sequential equivalence
checking for rtl models. eetimes now,” 2006.

[4] P. Chauhan et al., “Non-cycle-accurate sequential equivalence checking,”
in DAC’09. IEEE, pp. 460–465.

[5] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to rtl equivalence checking,” in DATE’09, pp. 196–201.

[6] J. Baumgartner et al., “Scalable sequential equivalence checking across
arbitrary design transformations,” in ICCAD’06. IEEE, pp. 259–266.

[7] C. Van Eijk, “Sequential equivalence checking without state space
traversal,” in DATE’98. IEEE, pp. 618–623.

[8] L. Piccolboni et al., “Kairos: Incremental verification in high-level
synthesis through latency-insensitive design,” in FMCAD’19.

[9] C. Pixley, “Introduction to a computational theory and implementation of
sequential hardware equivalence,” in ICCAD’90. Springer, pp. 54–64.

[10] A. R. Bradley, “Sat-based model checking without unrolling,” in VM-
CAI’11. Springer, pp. 70–87.

[11] A. Goel and K. Sakallah, “Model checking of verilog rtl using ic3
with syntax-guided abstraction,” in NASA Formal Methods Symposium.
Springer, 2019, pp. 166–185.

[12] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, 1991.

[13] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Parameter synthesis
with ic3,” in FMCAD’13. IEEE, pp. 165–168.

[14] A. R. Bradley et al., “An incremental approach to model checking
progress properties,” in FMCAD’11. IEEE, pp. 144–153.

[15] K. Claessen and N. Sörensson, “A liveness checking algorithm that
counts,” in FMCAD’12. IEEE, pp. 52–59.

[16] K. L. McMillan, “Interpolation and sat-based model checking,” in
CAV’03. Springer, pp. 1–13.

[17] T. Seufert, C. Scholl, D. Groe, and R. Drechsler, “Sequential verification
using reverse pdr.” in MBMV, 2017, pp. 79–90.

[18] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Ic3 modulo theories
via implicit predicate abstraction,” in TACAS’14. Springer, pp. 46–61.

[19] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2, btormc and
boolector 3.0,” in ICCAD’18. Springer, pp. 587–595.

[20] A. Goel and K. Sakallah, “Avr: abstractly verifying reachability,” in
TACAS’20. Springer, pp. 413–422.

[21] M. Preiner, A. Biere, and N. Froleyks, “Hardware model checking
competition 2020,” 2020.

[22] P. R. Panda and N. D. Dutt, “1995 high level synthesis design repository,”
in ISSS’95, pp. 170–174.

